
How to diagnose
(almost) anything

CS-214 – 2024-09-25

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 1

Clément Pit-Claudel

https://pit-claudel.fr/clement/


Quick
announcements

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 2

Good job on find!

Don't var

(won't work on the midterm)

This week's lab

has a callback!

New help sessions

Tuesdays 4–7 PM in INF [123]

(INF 1 from 5 PM next week)



The plan for
CS-214.SE

Make you (better) software

engineers

Show you how to figure things

out

Versioning and collaboration

3 lectures

Writing correct code

4 lectures

Building apps from scratch

3 lectures

+ unguided lab & callback

Refactoring & code evolution

Labs + exercises

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 3



Exercise
Think of a bug that frustrated you in a recent lab.

Share with your neighbor.

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 4



Today

Debugging:

Principles + case studies

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 5

Identify and describe

unwanted behaviors

Produce useful and complete

defect reports

Pinpoint the root cause of an

issue in a software system



The 2024 CS-214 guide to debugging: on one slide

Process

Triage

1. Check that there is a problem

2. Reproduce the issue

3. Decide whether it’s your problem

4. Write it up

Diagnose and fix

1. Learn about the system

2. Simplify, minimize, and isolate

3. Observe the defect

4. Guess and verify

5. Fix and confirm the fix

6. Prevent regressions

Techniques

Keep notes

Change one thing at a time

Apply the scientific method

Instrument

Divide and conquer

Ask for help

Pitfalls

Random mutation

Staring aimlessly

Wasting time

Assuming a bug went away

Fixing effects, not causes

Losing data

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 6



A case study

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 7



EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 8





Step 1 (of 2)

Triage

Check

that there is a problem

Reproduce

the issue

Decide

whether it’s your problem

Write up

a detailed bug report

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 10



Triage 1&2: Confirm and reproduce

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 11

1. Confirm that there is a problem

Know what you’re looking for

State what the issue is.

(May be refined later)
→ “Coursier exits silently without installing Scala”

Compare to the spec, the

documentation, the requirements.
→ “Pressing ‘step’ must advance the simulation”

Is it obvious why the bad case is

different from a good case?
→ “System will identify animal in picture”

2. Reproduce the issue

Gather information

Does it happen every time?
→ “Only on Tuesdays”

Does it happen for every input?
→ “Only in test 3”

→ “Only when clicking repeatedly”

Does it depend on system config?
→ “Only with SBT version XYZ”

Are there any diagnostics?
→ Error messages, logs, dialogs

Did it work at one point?
→ Previous versions, commit history



Triage 3&4: Decide and write up

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 12

3. Decide whether it’s your pb

Not all bugs are worth fixing

Do I need to fix it?
→ Closed-source SW, lack of expertise/interest

Is it worth fixing?
→ Workaround may be sufficient

Does it need to be fixed now?
→ Lab must be released to students at 4PM

Do I know where to complain?
→ May require diagnosis

4. Write it up

Don’t waste your work

Check previous reports
→ Browse bugs DB

→ Check known issues

→ Browse previous questions!

Find where to report
→ Email, bug tracker, contact form

Check reporting guidelines
→ Is there a security policy?

Write clearly and completely
→ Pick a good title

→ Include steps taken, results observed, expectations

→ Include system details, any customization



Exercise
Apply this to the SBB example!

Number: CS006551005
Date: 25.09.2024
Description:

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 13



How to ask a CS214 Ed question

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 14

 title

 punctuation

 problem

 expected behavior

 reproduction steps

 formatted code

Relevant info 

Helpful

Good

Clear

Has

Has

Properly

present



Ed post checklist

☑ Is the title clear?

✘  “Lab 2” ⟶ ✔  “Broken link to lab 2 on Moodle”

✘  “Git” ⟶ ✔  “Git error: ‘corrupt loose object’”

✘  “infinite loop” ⟶ ✔  “Infinite loop in minMax”

☑ Is the description precise?

✘  “It doesn’t work” ⟶ ✔  “When given input x, it produces value y […]”

✘  “It’s weird” ⟶ ✔  “[…] it produces value y, which is unexpected because […]”

✘  “In the lecture […]” ⟶ ✔  “On slide n of the lecture on x, […]”

☑ Is the description usable?

✘  Code screenshot ⟶ ✔  Code block

✘  Code snippet ⟶ ✔  Self-contained example

☑ Are attempts at a solution documented?

✘  “I tried everything” ⟶ ✔  “Here are the things I tried: […]”

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 15



Step 2 (of 2)

Diagnose & fix

Learn

about the system

Observe

the defect

Simplify

and minimize

Guess

and verify

Fix

and confirm the fix

Prevent

regressions

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 16



Diagnosis 1&2: Learn and observe

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 17

1. Learn about the system

Know what to expect

Consult the docs/manual
→ Read the lab write-up in detail

Search for relevant resources
→ Known issues, error guides

→ Documentation on error messages

Know what you don’t know
→ “What happens if %PATH% contains special characters?”

→ “Does 1 until n include n?”
→ “I’m not sure how VSCode starts the JVM to run Metals”

Know the relevant tools
→ JTAG, perf, strace, objdump, a multimeter, …

Skim through the code
→ Find entry point, seemingly relevant functions

2. Observe the issue

Learn more about the problem

Exercise different angles
→ Vary the inputs

→ Look upstream and downstream (consequences)

Read error messages

Add logging / tracing Print relevant

variables and rerun
→ Turn on errors and warnings

Use the right tools
→ But don’t get distracted

Use the VCS history
→ Especially for regressions

Read the code



Diagnosis 3&4: Simplify and guess

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 18

3. Simplify and minimize the issue

Find the relevant subsystem

Simplify the inputs
→ Shorten the test case

→ Find a short and simple input

Simplify the system
→ Remove unnecessary code

→ Reproduce the problem in isolation

→ Check a different machine/config

Slow things down
→ Introduce delays or pauses

Determinize the failure
→ Set random seeds

→ Stop other processes

Automate the failure
→ Have tests not just a user story

→ Use simplest possible tests (unit tests if possible)

→ Run tests on CLI, not in UI with clicks

4. Guess and verify

Be a scientist!

Formulate a hypothesis
→ “I forgot to clamp the speed”

→ “The acceleration may be applied twice”

→ “Hard drive delays are causing our latency issues”

→ “Values get corrupted in step 5”

Design an experiment
→ Transform or observe the system to test your hypothesis.

→ Add logging, breakpoints, assertions, prints,

Narrow down issue
→ Divide bug into smaller bugs using informed guesses and

hypothesis testing

→ Move failing tests up until they pass

→ Look for the root cause



Diagnosis 5&6: Fix and prevent

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 19

5. Fix and confirm the fix

Change relevant system

Decide whether to fix the problem
→ Is the problem easily fixable?

→ Is a workaround preferable?

→ Revisit “Do I have to fix it”?

Apply the changes

Revert other changes
→ Use your VCS to undo unrelated changes

→ Confirm the fix on a clean system

Confirm the fix
→ Re-run all tests

→ Confirm that other behavior isn’t affected

6. Prevent regressions

Protect future developers

Document the resolution
→ Write a detailed commit message

→ Update the report to document the root cause, the fix or

workaround, and any required follow-ups

Look for similar instances
→ Fix all bugs in that family, not just one

Add missing tests
→ Prevent future regressions



Triage & diagnosis techniques (do this…)

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 20

✔  Keep notes
→ Write every change down:

“Ran cs_setup.exe from cmd in C:\”

→ Write your observations

“The checksum is correct after the download”

→ Work on a Git branch

→ Keep decision trees, guesses, mind maps

✔  Change one thing at a time
→ Needed to establish cause / effect relationships

Avoid: “I added a lock and a cooldown period and an

automated retry and a generic try-catch block and the error is

gone”

✔  Apply the scientific method
→ Write down a conjecture (potential cause)

“The function is not exploring all directories”

→ Design an experiment

Add println to every call to find

→ Reject or accept

“All directories are printed” ⇒ reject

✔  Instrument
→ Add println calls

→ Write to logs

✔  Divide and conquer
→ Design tests to pinpoint the source

“Bug happens in UI but not on CLI”

→ Inspect intermediate states

“System is stable until cohesion force kicks in”

→ Test components in isolation

Move from integration tests to unit tests

✔  Ask for help
→ Find a system expert

→ Write up problem online

→ Look for troubleshooting guides

→ Post on Ed



Pitfalls (… don't do this)

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 21

✘  Random mutation
→ Don’t change things “until it works”

✘  Staring aimlessly
→ “I spent 8 hours looking at this code”

✘  Guessing without verifying
→ Fixing a bug takes time. Don’t fix correct code!

→ Guessing well takes practice.

✘  Wasting time
→ Experiments are not all equally easy

→ Look out for signs of going down a rabbit hole

→ Sometimes a quick check can eliminate many possible

hypotheses

→ Reinstalling the OS is a last resort

✘  Assuming bug went away
→ Bugs don’t disappear

→ … and they reappear at the worst time

✘  Focusing on the wrong thing
→ “I just added cohesion and it fails, so the error must be there”

✘  Fixing effects, not causes
→ “I will just multiply all speeds by two”

→ “I just need to reinstall SBT every time I log in”

→ “I rewrote all the code and now it works”

✘  Losing data
→ Take a disk image

→ Save the buggy code somewhere

→ Keep the logs / core dumps / …



Conclusion:
Use the CS214 debugging guide!

After fixing a bug:

Go through this guide

Reflect on what went right and wrong

When tackling a new bug:

Pull up this guide

Follow the steps in order

When asking a question on Ed:

Pick a helpful title

Describe which steps you took and where you got stuck, in detail

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 22



Suggested reading

Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive

Software and Hardware Problems (David J. Agans)

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 24

How do I ask a good question? - Help Center - Stack Overflow

Bug Reporting Guide | Contributing to Scala's OSS Ecosystem

Understanding Bug Reporting (GNU Emacs Manual)

Checklist for bug reports (GNU Emacs Manual)

Submitting Bugs and Suggestions · microsoft/vscode Wiki · GitHub

How to Debug – Embedded in Academia

https://stackoverflow.com/help/how-to-ask
https://docs.scala-lang.org/contribute/bug-reporting-guide.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Understanding-Bug-Reporting.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Checklist.html
https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions
https://blog.regehr.org/archives/199


Number: CS006551005
Date: 04.10.2023 15:50:10 CEST
Description: Incorrect display on train to Geneva in Lausanne:

"Genève-Aéroport" as "Genшve-Aщroport"

Hi,

My name is Clément, I work at EPFL.
On September 3rd, in Lausanne, at 11:12 PM, I noticed an incorrect
display on my train door.

It appears that “Genève” and “Aéroport” were not displayed correctly:
"Genève-Aéroport" was displayed as "Genшve-Aщroport".

I have attached a picture.

Some speculation: it could be that the text "Genève-Aéroport" was
encoded using Latin-1, and decoded using ISO-8859-5 or one of its
variants.

Thank you for your time,
Clément Pit-Claudel.

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 25



mit freundlichen Grüssen

From: SBB Customer Service <customerservice@sbb.ch>
To: clement.pit-claudel@epfl.ch
Subject: AW: CS006551005 - SBB - Customer information on the display
Date: Mon, 09 Oct 2023 05:58:03 -0700

Sehr geehrte Damen und Herren

* Der Fehler lag hier vermutlich im «KIS» System, dem Software System
welche die Ansage und die Beschriftung koordiniert.

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 26


