How TO DIAGNOSE
(ALMOST) ANYTHING

CS-214 - 2024-09-25
Clément Pit-Claudel

https://pit-claudel.fr/clement/

Quick
announcements

Time spent on find

100 1

80

60 A

40 1

Number of students

20 A

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Good job on find!

Don't var
(won't work on the midterm)

This week's lab
has a callback!

New help sessions
Tuesdays 4-7PM in INF[123]
(INF1 from 5PM next week)

Clément Pit-Claudel

The plan for
CS-214.SE

= Make you (better) software
engineers

= Show you how to figure things
out

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Versioning and collaboration
3 lectures

Writing correct code
4 |lectures

Building apps from scratch
3 lectures
+ unguided lab & callback

Refactoring & code evolution
Labs + exercises

Clément Pit-Claudel

EXERCISE

Think of a bug that frustrated you in a recent lab.
Share with your neighbor.

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

= |dentify and describe
unwanted behaviors

Tod ay = Produce useful and complete
Debugging: defect reports
Principles + case studies = Pinpoint the root cause of an

issue in a software system

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

THE 2024 CS-214 GUIDE TO DEBUGGING: ON ONE SLIDE

Process

Triage
1. Check that there is a problem
2. Reproduce theissue

3. Decide whether it’s your problem
4. Write it up

Diagnose and fix

1. Learn about the system

2. Simplify, minimize, and isolate
3. Observe the defect

4. Guess and verify

5. Fix and confirm the fix

6. Prevent regressions

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Techniques

= Keep notes

® Change one thing at a time
= Apply the scientific method
= |nstrument

= Divide and conquer

= Ask for help

Pitfalls

= Random mutation

= Staring aimlessly

= Wasting time

= Assuming a bug went away
® Fixing effects, not causes

= | osing data

Clément Pit-Claudel

A CASE STUDY

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

Step 1 (of 2)

Triage

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Check
that there is a problem

Reproduce
the issue

Decide
whether it’s your problem

Write up
a detailed bug report

Clément Pit-Claudel

10

TRIAGE 1&2: CONFIRM AND REPRODUCE

1. Confirm that there is a problem 2. Reproduce the issue

Know what you’re looking for Gather information
O State what the issue is. 0 Does it happen every time?
(May be refined later) > “Only on Tuesdays”
> “Coursier exits silently without installing Scala” 0 Does it happen for every |nput7
0 Compare to the spec, the > "Onlyin test 3"

> “Only when clicking repeatedly”
documentation, the requirements.

> “Pressing ‘step’ must advance the simulation”

0 Does it depend on system config?

> “Only with SBT version XYZ”
O |Is it obvious why the bad case is

different from a good case?

> “System will identify animal in picture”

0 Are there any diagnostics?

> Error messages, logs, dialogs

0 Did it work at one point?

> Previous versions, commit history

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 11

TRIAGE 3&4: DECIDE AND WRITE UP

3. Decide whether it’s your pb 4. Write itup
Not all bugs are worth fixing Don’t waste your work
0 Do/ need to fix it? 0 Check previous reports
> Closed-source SW, lack of expertise/interest > Browse bugs DB
. L. > Check known issues
O Is it worth leIﬂg? > Browse previous questions!

> Workaround may be sufficient

0 Find where to report
O Does it need to be fixed now? > Email, bug tracker, contact form

> Lab must be released to students at 4PM

0 Check reporting guidelines
O Do I know where to complain? > Is there a security policy?

> May require diagnosis

0 Write clearly and completely

> Pick a good title
> Include steps taken, results observed, expectations
> Include system details, any customization

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 12

EXERCISE

Apply this to the SBB example!

Number: CS006551005
Date: 25.09.2024
Description:

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Clément Pit-Claudel

13

How TO ASKA CS214 ED QUESTION

What does 'A pure expression does nothing in statement
position' mean?

Anonymous < * 104
5 hours agoinLab 2 PIN STAR WATCH VIEWS
Hi,

When | replace the contents of playground.worksheet.sc with the following code, VSCode
underlines the first 0 in red. The corresponding error message is "A pure expression does nothing in
statement position; you may be omitting necessary parentheses"

= Helpful title

ok=h M) B ((Akahe)) =

HEns thells = Good punctuation
else if true
\(f;a_} fakud () = Clear problem
else © ® Has expected behavior

= Has reproduction steps
= Properly formatted code

What does the error message mean, and how can | fix my code?
Comment Edit Delete Endorse -<-* [Releva nt info present

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 14

ED POST CHECKLIST

M Is the title clear?

X “Lab2” — ' “Broken link to lab 2 on Moodle”
X “Git” — / “Giterror: ‘corrupt loose object’
X “infinite loop” — “Infinite loop in minMax”

M Is the description precise?

v “When given input x, it produces value y[...]”
v “[...]it produces value y, which is unexpected because [...]
v “Onslide n of the lectureonx, [...]”

X “It doesn’t work” —
X “It’s weird”
X “Inthe lecture/...]”

Il

M Is the description usable?

X Code screenshot — Code block
X Code snippet — / Self-contained example

M Are attempts at a solution documented?
X “ltried everything” — “Here are the things I tried: [...]”

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

»

15

Step 2 (of 2)

Diagnose & fix

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Learn
about the system

Observe
the defect

Simplify
and minimize

Guess
and verify

Fix
and confirm the fix

Prevent
regressions

Clément Pit-Claudel

16

DIAGNOSIS 1&2: LEARN AND OBSERVE

1.

O

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Learn about the system
Know what to expect

Consult the docs/manual

> Read the lab write-up in detail

Search for relevant resources

> Known issues, error guides
-> Documentation on error messages

Know what you don’t know

> “What happens if ZPATH% contains special characters?”

> “Does 1 until nminclude n?”
> “I’m not sure how VSCode starts the JVM to run Metals”

Know the relevant tools

> JTAG, perf, strace, objdump, a multimeter, ...

Skim through the code

> Find entry point, seemingly relevant functions

. Observe the issue

Learn more about the problem

Exercise different angles

> Vary the inputs
> Look upstream and downstream (consequences)

Read error messages

Add logging / tracing Print relevant
variables and rerun

> Turn on errors and warnings

Use the right tools

> But don’t get distracted

Use the VCS history

> Especially for regressions

Read the code

Clément Pit-Claudel 17

DIAGNOSIS 3&4: SIMPLIFY AND GUESS

3. Simplify and minimize the issue
Find the relevant subsystem

O

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Simplify the inputs
> Shorten the test case
> Find a short and simple input

Simplify the system

-> Remove unnecessary code
-> Reproduce the problem inisolation
> Check a different machine/config

Slow things down

> Introduce delays or pauses

Determinize the failure

> Set random seeds
> Stop other processes

Automate the failure

> Have tests not just a user story

> Use simplest possible tests (unit tests if possible)

> Run tests on CLI, not in Ul with clicks

4. Guess and verify

Be a scientist!

0 Formulate a hypothesis

> “Iforgot to clamp the speed”

> “The acceleration may be applied twice”

> “Hard drive delays are causing our latency issues”
> “Values get corrupted in step 5”

0 Design an experiment

> Transform or observe the system to test your hypothesis.
> Add logging, breakpoints, assertions, prints,

0 Narrow down issue

> Divide bug into smaller bugs using informed guesses and
hypothesis testing

> Move failing tests up until they pass

> Look for the root cause

Clément Pit-Claudel

18

DIAGNOSIS 5&6: FIX AND PREVENT

5. Fix and confirm the fix 6. Prevent regressions
Change relevant system Protect future developers
0 Decide whether to fix the problem 0 Document the resolution
> Isthe problem easily fixable? > Write a detailed commit message
> Is a workaround preferable? > Update the report to document the root cause, the fix or
> Revisit “Do | have to fix it”? workaround, and any required follow-ups
0 Apply the changes 0 Look for similar instances

> Fixall bugs in that family, not just one

O Revert other changes o
> Use your VCS to undo unrelated changes = Add MISSI ng tests

> Confirm the fix on a clean system > Prevent future regressions

0 Confirm the fix

> Re-run all tests
> Confirm that other behavior isn’t affected

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

TRIAGE & DIAGNOSIS TECHNIQUES (DO THIS...)

v Keep notes v Instrument
> Write every change down: > Add println calls
“Ran cs_setup.exefrom cmdin C:\” > Write to logs
> Write your observations L.
“The checksum is correct after the download” v Divide and con quer

> Work on a Git branch
> Keep decision trees, guesses, mind maps

> Design tests to pinpoint the source
“Bug happens in Ul but not on CLI”
. . > Inspect intermediate states
‘/ C h an ge one th In g atatime “System is stable until cohesion force kicks in’
> Needed to establish cause / effect relationships > Test components in isolation
Avoid: “l added a lock and a cooldown period and an Move from integration tests to unit tests
automated retry and a generic try-catch block and the error is

gone” v Ask for help

. . re > Find a system expert
v Apply the scientific method 5 Write up problem online
> Write down a conjecture (potential cause) > Look for troubleshooting guides
“The function is not exploring all directories” > Post on Ed
> Design an experiment
Add printlntoeverycallto find
> Reject or accept
“All directories are printed” = reject

4

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

PITFALLS (... DON'T DO THIS)

X

X

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything

Random mutation

> Don’t change things “until it works”

Staring aimlessly

> “I'spent 8 hours looking at this code”

Guessing without verifying

> Fixing a bug takes time. Don’t fix correct code!
> Guessing well takes practice.

Wasting time

> Experiments are not all equally easy

> Look out for signs of going down a rabbit hole

> Sometimes a quick check can eliminate many possible
hypotheses

> Reinstalling the OS is a last resort

Assuming bug went away

> Bugs don’t disappear
> ...and they reappear at the worst time

X

X

Focusing on the wrong thing

> “ljust added cohesion and it fails, so the error must be there’

)

Fixing effects, not causes

> “l'will just multiply all speeds by two”
> “ljust need to reinstall SBT every time I log in”
> “I'rewrote all the code and now it works”

Losing data

> Take a disk image
> Save the buggy code somewhere
> Keep the logs / core dumps/ ...

Clément Pit-Claudel

21

CONCLUSION:
USE THE CS214 DEBUGGING GUIDE!

After fixing a bug:

= Go through this guide

= Reflect on what went right and wrong
When tackling a new bug:

= Pull up this guide

= Follow the stepsin order

When asking a question on Ed:

= Pick a helpful title
= Describe which steps you took and where you got stuck, in detail

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

22

SUGGESTED READING

= How do | ask a good question? - Help Center - Stack Overflow

= Bug Reporting Guide | Contributing to Scala's OSS Ecosystem

= Understanding Bug Reporting (GNU Emacs Manual)

= Checklist for bug reports (GNU Emacs Manual)

= Submitting Bugs and Suggestions - microsoft/vscode Wiki - GitHub

= Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive
Software and Hardware Problems (David J. Agans)

= How to Debug - Embedded in Academia

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel 24

https://stackoverflow.com/help/how-to-ask
https://docs.scala-lang.org/contribute/bug-reporting-guide.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Understanding-Bug-Reporting.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Checklist.html
https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions
https://blog.regehr.org/archives/199

Number: CS006551005

Date: 04.10.2023 15:50:10 CEST

Description: Incorrect display on train to Geneva in Lausanne:
"Genéve-Aéroport" as "Genuwve-Awroport"

Hi,

My name is Clément, I work at EPFL.
On September 3rd, in Lausanne, at 11:12 PM, I noticed an 1incorrect
display on my train door.

It appears that “Geneve” and “Aéroport” were not displayed correctly:

"Geneve-Aeroport" was displayed as "Genwve-Awroport".
I have attached a picture.

Some speculation: it could be that the text "Genéve-Aéroport" was
encoded using Latin-1, and decoded using IS0-8859-5 or one of 1its
variants.

Thank you for your time,
Clément Pit-Claudel.

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

25

From: SBB Customer Service <customerserviceagsbb.ch>

To: clement.pit-claudelepfl.ch
Subject: AW: CS006551005 - SBB - Customer information on the display

Date: Mon, 09 Oct 2023 05:58:03 -0700

Sehr geehrte Damen und Herren

* Der Fehler lag hier vermutlich im «KIS» System, dem Software System
welche die Ansage und die Beschriftung koordiniert.

mit freundlichen Grussen

EPFL CS 214 Software Construction Fall 2024 How to diagnose (almost) anything Clément Pit-Claudel

26

